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e Formulation Task Purpose e

* Provide NASA Space Technology Program (STP) and
Office of the Chief Technologist (OCT) with a knowledge
base on advanced space propulsion technologies

— Furnishes next layer of detail for technologies summarized in
NASA'’s In-Space Propulsion Systems Roadmap, Technology
Area 02 (TA-02)

— Supports STP/OCT on where investments should be made

« Enable good strategic decision making

— Allows for better utilization of STP/OCT resources by giving
context to any past, current, or proposed in-space propulsion
technology development efforts in terms of:

« Performance capability
« Technology Readiness Level
» Focus on those with potentially major impacts
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» 45 Technologies were identified in

NASA'’s In-Space Propulsion
Systems Roadmap, Technology
Area 02 (TA-02)

TA-02 roadmap divided into four
basic groups

— (1) Chemical Propulsion

— (2) Non-chemical Propulsion

— (3) Advanced (TRL<3) Propulsion
Technologies

— (4) Supporting Technologies (pertinent
technical areas strongly coupled with
these groups which could allow
significant improvements in
performance)

TA-02 Roadmap limited to 30 pages;
more information needed to better
understand each concept

25 of 45 were studied during this
formulation task

— Emphasis was on groups (3) and (2)




s TA-02 Identified Technologies

1.0 Chemical Propulsion 2.0 Nonchemical Propulsion (Continued)

. 1.01 Monopropellants . 2.12 MEMS Electrospray

. 1.02 Bipropellants . 2.13 Solar Sail Propulsion

. 1.03 High-Energy Propellants . 2.14 Solar Thermal

. 1.04 High-Energy Oxidizers . 2.15 Nuclear Thermal

. 1.05 LOX/Methane Cryogenic . 2.16 Electrodynamic Tether

. 1.06 LOX/LH2 Cryogenic . 2.17 Momentum Exchange Tether

. 1.07 Gelled and Metalized-Gelled Propellants

. 1.08 Solid Rocket Propulsion Systems 3.0 Advanced Propulsion Technologies

. 1.09 Hybrid Rockets . 3.01 Beamed Energy Propulsion

. 1.10 Cold Gas/Warm Gas Systems . 3.02 Electric Sail Propulsion

. 1.11 Solid Micropropulsion . 3.03 Fusion Propulsion

. 1.12 Solid Cold Gas/Warm Gas Micropropulsion Systems . 3.04 Metallic Hydrogen

. 1.13 Hydrazine or Hydrogen Peroxide Monopropellant . 3.05 Atomic Boron/Carbon/Hydrogen
Micropropulsion . 3.06 High Nitrogen Compounds (N4+, N5+)

. 3.07 Antimatter Propulsion

2.0 Nonchemical Propulsion . 3.08 Gas Core Fission

. 2.01 Resistojets . 3.09 Fission Fragment

. 2.02 Arcjets . 3.10 External Pulsed Plasma Propulsion

y 2.03 lon Thrusters . 3.11 Breakthrough Propulsion Physics

. 2.04 Hall Thrusters

. 2.05 Pulsed Inductive Thrusters 4.0 Supporting Technologies

. 2.06 Magnetoplasmadynamic Thrusters . 4.01 Engine Health Monitoring and Safety

. 2.07 Variable Specific Impulse Magnetoplasma Rocket . 4.02 Propellant Storage, Transfer & Gauging

. 2.08 Microresistojets . 4.03 Materials & Manufacturing Technologies

. 2.09 Teflon Microcavity Discharge . 4.04 Heat Rejection

. 2.10 Micropulse Plasma . 4.05 Power

. 2.11 Miniature lon/Hall




s TA-02 Identified Technologies

Technologies Addressed in Formulation Task

1.0 Chemical Propulsion 2.0 Nonchemical Propulsion (Continued)

. 1.01 Monopropellants . 2.12 MEMS Electrospray

. 1.02 Bipropellants . 2.13 Solar Sail Propulsion

. 1.03 High-Energy Propellants . 2.14 Solar Thermal

. 1.04 High-Energy Oxidizers . 2.15 Nuclear Thermal

. 1.05 LOX/Methane Cryogenic . 2.16 Electrodynamic Tether

. 1.06 LOX/LH2 Cryogenic . 2.17 Momentum Exchange Tether

. 1.07 Gelled and Metalized-Gelled Propellants

. 1.08 Solid Rocket Propulsion Systems 3.0 Advanced Propulsion Technologies

. 1.09 Hybrid Rockets . 3.01 Beamed Energy Propulsion

. 1.10 Cold Gas/Warm Gas Systems . 3.02 Electric Sail Propulsion

. 1.11 Solid Micropropulsion . 3.03 Fusion Propulsion

. 1.12 Solid Cold Gas/Warm Gas Micropropulsion Systems . 3.04 Metallic Hydrogen

. 1.13 Hydrazine or Hydrogen Peroxide Monopropellant . 3.05 Atomic Boron/Carbon/Hydrogen
Micropropulsion . 3.06 High Nitrogen Compounds (N4+, N5+)

. 3.07 Antimatter Propulsion

2.0 Nonchemical Propulsion . 3.08 Gas Core Fission

. 2.01 Resistojets . 3.09 Fission Fragment

. 2.02 Arcjets . 3.10 External Pulsed Plasma Propulsion

. 2.03 lon Thrusters . 3.11 Breakthrough Propulsion Physics

. 2.04 Hall Thrusters

. 2.05 Pulsed Inductive Thrusters 4.0 Supporting Technologies

. 2.06 Magnetoplasmadynamic Thrusters . 4.01 Engine Health Monitoring and Safety

. 2.07 Variable Specific Impulse Magnetoplasma Rocket . 4.02 Propellant Storage, Transfer & Gauging

. 2.08 Microresistojets . 4.03 Materials & Manufacturing Technologies

. 2.09 Teflon Microcavity Discharge . 4.04 Heat Rejection

. 2.10 Micropulse Plasma . 4.05 Power

. 2.11 Miniature lon/Hall
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Map relevant existing technology and R&D efforts that NASA
funds on Space Propulsion Concepts chart to identify gaps

Generate Summary Report and one-page Summary Chart for
each technology that includes:

— Narrative Description of technology with images depicting concepts and
technology current state of the art (laboratory, flight experiments, etc)

— Mission Applications and/or benefits of using concept compared to
existing chemical systems

— ldentification of professional experts (by Name and Organization)
— Description of past or current efforts at NASA, DoD, and universities

— ldentification of supporting subsystem or component technology hurdles
(if applicable) needing development for this propulsion system concept to
be feasible

« Some may be shared by multiple concepts, increasing their importance
— Estimate of financial investment with each technology to date (if available)
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s Mapping of Early FY12 NASA Efforts @

Category/Award | AES |Grants |SBIR |STTR|TDM| NIAC | Other | ISP | Total
Chemical Rockets 2 2 2 1 1 8
Chemical RBCC 0
Thermal Fission 1 2 3
Pulsed Fission 1 1
Antimatter 1 1
Laser/Solar Thermal 0
Pulsed Fusion 1 1
Electrothermal 1 1
Electro-Magnetic 4 2 1 1 8
Electrostatic 2 2 2 6
Continuous Fusion 1 2 3
Sails 1 1 2 4

AES: Advanced Exploration Systems

SBIR: Small Business Innovative Research
STTR:  Small Business Technology Transfer
TDM: Technology Demonstration Missions
NIAC: NASA Innovative Advanced Concepts
ISP: OCT In-Space Propulsion Project
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o Sample Summary Chart

Solar Thermal Propulsion (STP)

Mission Applications/Benefits (compared with off-shelf chemical)

Propulsion System Description

STP was primarily considered as an upperstage to take payloads
from low-earth-orbit (LEO, ~200 miles altitude) to geosynchronous
earth orbit (GEO, ~22,000 miles altitude). Having a specific impulse
(~900 seconds with hydrogen) about twice that of conventional
chemical in-space engines allows for more payload weight on the
launch vehicle. However, the volume of liquid hydrogen took up
more volume in the payload shroud and the thrust level was 2-4 |bs,
meaning the time for a LEO to GEO transfer mission was ~30 days.
Others considered STP applications include using the heat from the
system as bi-modal for electric power generation and as a transfer
stage to the moon and other solar system destinations. More thrust

The STP system takes the unfocused solar energy impinging on a
large collector/concentrator and transforms it into kinetic energy

of a propellant for thrust from direct heating of the propellant or
indirect heating via heat exchanger.

than most electric propulsion concepts.

Subsystem State of the Art
Thruster- Most thruster work in the pastinvolved
ground testing indirect solar heating as direct gain
orthermal storage. Thrustrange 0.5-2 Ibs, lsp
700-860 seconds with hydrogen, Matarials tested
Tungsten, Tungsten/Rhenium alloys, Rhenium,
Rhenium coated graphite, Experiments with
carbides and carbide coatings. Temperature goal
2700-3000K. More testing needed to verify
performance holds up to mission requirements.

Concentrator-Inflatable reflectors show the best
promise made of polyimide CP to withstand space
environment effects. Deployment of 4m x 6m off-
axis parabolicinflatable reflector from storage
package has been demonstrated to 50-60%
efficiency.

Propellant Utilization-Controlled 30 day boil-off of
liquid hydrogen to pressure feed the thruster has
been demonstrated.

Technical/Development Hurdles

Challenges are optical concentrator accuracy

and performance (improving from 50-60% to 85-
90%), system/stage packaging, sun pointing
(subarcsecaccuracy in flat, Lcm by 1 cm
packages), inflatable deployment, controlled
cryogenic boil-off, and engine performance. An
integrated overall system test has never been
performed. Concept TRL™4

STPis limited by payload shroud volume when
considering liquid hydrogen LH2. Options to
overcome this hurdle include the use of high
temperature carbides with melting point
~4200K.

Recommendations

Possible ways for STP to again be considered:
sIncrease in Isp above 900 seconds using
hydrogen. This requires high temperature
carbides with melting points ~4200K. Operating
a higher temperature increases the Isp to about
1200 seconds and allows more dissociation of
the hydrogen.
sUtilize a liquid hydrogen fuel depot or tanker
in orbit to refill a smaller propellant tank or fill
deployable tanks.
*Other propellants showing significantly better
performance than chemical and better storage
than hydrogen,

Subject Matter Experts:
Harold Gerrish (NASA-MSFC)
Mike Holmes (Air Force)
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Information Included for Each Concept

e Summary

 Conclusions and Recommendations

» Typical Schematics
« Applications
» Benefits

Limitations

Previous NASA SBIR/STTR Awards
Previous DOD SBIR/STTR Awards
Currently Availability

Flight/Test Heritage
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* Results of this task need wide dissemination
— Ease of use by STP/OCT
— Access to interested researchers and Subject Matter
Experts
« Plan to utilize a web-based system

— Examples being investigated:
* NASA TechPort
« MSFC Propulsion Databook

— Allows for easy access, review, and updating
« “Living” document

12
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Summary e

« Formulation task was performed in FY12 to provide

additional substance, depth, and activity knowledge to
technology areas identified in TA-02, In-Space
Propulsion Systems Roadmap

— 25 of 45 TA-02 Technologies were studied

Not a complete catalog but attempted to make results
objective and factual

Information is considered in a “draft’ state

— Recommending SMEs and others working in these areas review
and provide updates

Utilize information to develop proposals of promising
advanced propulsion technologies
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