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Outline 

• Technology Background 

• Preliminary MCD Data 

• Preliminary CubeSat Notional Designs 

• Summary 
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Micro-cavity Discharge 

(MCD) Thruster Background 
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• Based on microcavity discharge 

– UIUC, 1999 - 2011 

– illumination, medical, other apps 

– thousands of hours life observed 

• Parallel, stable cavities 

• Electrothermal device 

– AC discharge, 20 - 500 kHz 

– choked supersonic nozzle 

– fast warm-up 

– constant thrust ~ po 

• No auxiliary systems 

– no neutralizer, cathode, ignition 
system 

• High thruster efficiency predicted 

– low heat, frozen flow, nozzle loss 

• Long life with insulated electrodes 

Microcavity Discharge (MCD) Thrusters 



5 Distribution Statement A 

MCD Basics 

 

• RF power supply 

• Plasma created in 

microcavity between 

foils 
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MCD Thruster Basics 

• Gaseous propellant 

• RF power supply 

• Plasma created in 

microcavity between 

foils 

• Integral nozzle 

• Cavity electric field 

strength ~107 V/m 

• Predicted η ~ 60% 
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MCD Thruster Losses 

Loss Description Prediction 

power processor DC-AC converter+kHz stepup transformer   5%  

feed system pressurized tank   <1% 

thruster auxiliaries none   0% 

gas utilization unaccelerated propellant   0% 

ionization loss ion. fraction is 10-3 - 10-5,  = 15.9 eV   <1% 

wall heat loss subsonic wall heat transfer   5 - 10% 

dielectric loss AC heating of AL2O3  10% 

nozzle expansion supersonic boundary layer, low area ratio  10 - 15% 

radiation argon excitation   0 - 1% 

ablation insulator ablation low based on MCD   long life 

Total Losses MCD Thruster + PPU   30 - 40% 

System Efficiency MCD Thruster + PPU   60 - 70% 
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AFOSR Program Examined Scientific 

Challenges 

• Obtained an understanding of the basic physics & chemistry 

of 100 m MCD region to achieve efficient volumetric heating 

and acceleration of flowing plasma with minimal losses 

• Foil variation was not robust… 

- CUA used IR&D funds to create robust variation 
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Robust MCD Thruster: V-I Characteristic 

Dielectric heating loss 

Robust variation of MCD thruster 

tested by CU Aerospace 

• Initial test w/ robust MCD thruster using 

EP-13 propellant 

- Measured pressure rise at constant 

flow rate → 723 K 

- ≈ 30% thrust enhancement 

- No degradation of hardware 

• Very low erosion found during testing 

- “Electrodeless” → low erosion 

Current 

Pulse 
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Reference Design – MCD Thruster 

MCD 

Thruster 

EP-13 Plume Early MCD 

Thruster 
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Micro-Propulsion System 

(MiPS) Background: 

Cold Gas Technology 
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CubeSat Propulsion Design Challenges 

Packaging - Extremely Limited Volume: 

Liquid Propellant for Max Storage Density 

Propulsion System Doubles as Structure 

Pressurization System Eliminated 

Electrical Components Immersed in Propellant 

Reliability = Value: 

All-Welded, Titanium Construction 

Elimination of Tubing Connections 

Frictionless Valves 

Self-Pressurizing Propellant 

Electrical Power is Limited: 

Reserve Available Power for Payload 

High-Efficiency Micro Latch Valves 

Piezoelectrically Actuated Micro Valves 

Thermal Management: 

Propulsion System Acts as Heat Sink 

Symbiotic Relationship with Propellant 
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MEPSI Micro Propulsion System 

Micro Propulsion 

System 

10 cm CubeSat 

0.25U Propulsion System 
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Micro-Propulsion System Capability 

Thrust / Propulsion Wt.: 

0.108 to 0.120 N/Kg 

66 N-Sec/Kg 

Number of thrust cycles: 

Up to 61,000 Minimum 
Impulse Bit Firings 

Total Impulse:  34 N-Sec 

MEPSI Mass: 1.0 Kg 

Total DV: 34 m/s 

 26 m/s (–Z) 

1 m/s (+Z) 

3 m/s Pitch/Yaw 

4 m/s Roll & Un-Spin 
Reaction Wheels 

 

Thrust:   

55 mN (40 psia Plenum Pressure) 

Propulsion System Mass:  509 g 

Dry Mass: 456 g 

Propellant  Mass: 53 g (liquid) 

9.1 cm 
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Preliminary Warm Gas 

Design for CubeSats 
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Basic Concept 

 MCD technology + MEPSI/MiPS technology 

  

 = High performance CubeSat propulsion system  
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MCD / MiPS Hybrid System 

Heritage VACCO Micro 

Propulsion System 

tested at AFRL 

MicroCavity Discharge (MCD) thruster 

tested by CU Aerospace 
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ACS+Delta-V Reference Design 

3U CubeSat 
Concept 

PUC 

Package 
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Propulsion Unit Package 

PUC 
Package 
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ACS+Delta-V System Schematic 

CG1 

 

CG3 

Cold Gas 

Thrusters 

Warm Gas MCD Thruster 
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Simplified System Schematic 

 Primary propulsion only 

Gas Volume 

Propellant 

Storage Tank 

SV1 

P T 

Heater 

Heater 

PPU 
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Family of MCD CubeSat Thrusters 

0.14U 0.25U 0.5U 1.0U 
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• A robust microcavity discharge (MCD) thruster 
geometry was demonstrated by CU Aerospace 
– No auxiliary systems 

• no neutralizer or ignition system 

– High thruster efficiency predicted 
• low heat, frozen flow, and nozzle losses 

– Long life with insulated electrodes 

• Merge MCD technology with MEPSI/MiPS 
technology to provide compact, high 
performance propulsion system 

• CU Aerospace and VACCO Industries are rapidly 
advancing the technology on a Propulsion Unit 
for CubeSats (PUC) program funded by AFRL 

Summary 
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Backup Slides 
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Paschen Breakdown in Small Gaps 

Vbd versus the product p·d 

measured in Ar on devices 

with gap spacing ranging 

from 10 up to 500 m.  

 

Result: relevant gap 

spacing is electrode 

spacing (not discharge 

diameter) allowing E-fields 

> 107 V/m 

 

 
[Carazetti and Shea, 2009] 


