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outer 

Inner 

Eclipses

in the absence of batteries, engines 
are no longer powered by solar 
panels 
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Van Allen radiation belt

High-energy particles cause 
radiation damage to the solar cells 

Transfer Time

electric orbit-raising takes a significantly 
longer than chemical transfer

Power Requirements

mass benefit comes at cost of 
high power requirements 

1.Problem Statement
Challenges
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Minimize 
radiation 
incidence

Considered the 
eight-like shape of 
the Van Allen belt, 
a high inclination 
injection orbit can 
minimize the 
incidence of 
radiation 

Reduce time in 
eclipse

Longer solar 
exposure for the 
solar arrays 
avoids multiple 
eclipses and 
reduces energy 
storage system  
requirement

WHY?

1.Electric Orbit-Raising Problem
High-Inclination Injection Orbits



2.Equations of Motion
Spherical Coordinates

POSITION VECTOR

VELOCITY VECTOR

THRUST MAGNITUDE AND 
DIRECTION

TOTAL MASS OF THE SATELLITE

θ̇ =
v

r sinφ

ṁ = −T

c

r(t) = (r(t), θ(t),φ(t))

v(t) = (u(t), v(t), w(t))

STATE VECTORx(t) = (r(t),v(t),m(t))

AZIMUTHAL ANGLEθ
POLAR ANGLEφ

(T (t),α(t),β(t))

m(t)

φ̇ =
u

r

ṙ = w

u̇ =
−uw + v2 cotφ

r
+

T

m
sinβ

v̇ = −vw + uv cotφ

r
+

T

m
sinα cosβ

ẇ =
u2 + v2

r
− µ

r2
+

T

m
cosα cosβ

Dutta, Libraro, Kasdin, Choueiri, 2012
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QUATERNIONS

2.Quaternion-Based Formulation
Motivation

 

  HIGH-INCLINATION INJECTION ORBITS 

 QUATERNIONS ARE BOUNDED TO BE BETWEEN -1 AND 1

BIGGER SET OF MISSION SCENARIOS

 NONSINGULAR EQUATIONS OF MOTION

 

  NUMERICAL ROBUSTNESS

4 challenges

  REDUCE ECLIPSE TIME

  REDUCE RADIATION INCIDENCE



8

2.Quaternion-Based Formulation
Mathematical Framework

ψ

consider a 3-2-3 rotation by:

(θ,φ,ψ)

assume the following constraint 
holds:

ω3 = 0ψ̇ = −θ̇ cosφ

STATE VECTOR:

CONTROL VARIABLES:

(T,α,β)

radial velocity

angular velocity in 
the rotated frame

(r, q1, q2, q3, q4,ω1,ω2, w,m)

Libraro, Kasdin, Dutta, Choueiri, 2014
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START FROM





q̇1
q̇2
q̇3
q̇4



 =
1

2





q4 q3 −q2 −q1
−q3 q4 q1 −q2
q2 −q1 q4 −q3
q1 q2 q3 q4









ω1

ω2

0
0





APPLY THE CONSTRAINT: ω3 = 0

KINEMATIC EQUATIONS:

ω� = 2Eq̇ q̇ =
1

2
ETω�

[ω�] = [ω1,ω2, 0, 0]
T

ṙ = w

q̇1 =
1

2
(q4ω1 − q3ω2)

q̇2 =
1

2
(q3ω1 + q4ω2)

q̇3 =
1

2
(−q2ω1 + q1ω2)

q̇4 =
1

2
(−q1ω1 − q2ω2)

2.Quaternion-Based Formulation
Kinematics

Kane, Likins, Levinson 1983
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DYNAMICS EQUATIONS:

DYNAMICS EQUATIONS:

v = ṙêr + rω × êr

ω = ω1b̂1 + ω2b̂2 + ω3êr

FORCE:

a = r̈êr + 2ṙω × êr + rω̇ × êr+

ACCELERATION:

+rω × ω × êr

F = F1b̂1 + F2b̂2 + F3êr

ω̇1 = −2ṙ

r
ω1 −

F2

mr

ω̇2 = −2ṙ

r
ω2 +

F1

mr

ẇ = r(ω2
1 + ω2

2)−
µ

r2
+

F3

m

2.Quaternion-Based Formulation
Equations of Motion

II CONSTRAINT:

q21 + q22 + q23 + q24 = 1

ω3 = 0

+ 2 CONSTRAINTS!



TEST CASES

2d transfer

3d transfer

• 800 km ---> 10,000 km 
• i = 90 deg
• T = 3 N
• Isp = 2,000 s
• m = 1,000 kg

• 10,000 km ---> GEO
• 90 deg ---> 0 deg
• T = 0.29 N x 4 (BPT-4000)
• Isp = 1,788 s
• m = 3,500 kg

LU  = GEO radius = 42,157 km

MU = 1,000 kg

TU = 13,716.85 s

NONDIMENSIONAL UNITS

3.Integration & Testing of the EOM
Matlab integration

Libraro, Kasdin, Dutta, Choueiri, 2014



F =
Tv

v
= T

�
rω2

v
b̂1 −

rω1

v
b̂2 +

ṙ

v
êr

�
TANGENTIAL FORCE PROFILE

3.Integration & Testing of the EOM
2d case:polar orbit-raising

NEW QUATERNION-BASED FORMULATION IS LESS SENSITIVE TO NUMERICAL ERROR!

NUMERICAL ALGORITHMS:

- NDFS: Numerical Differentiation Formulas
- ABM: Adams-Bashforth-Moulton
- RK23: Runge-Kutta (2,3)
- MR2: Modified Rosenbrock Formula (2nd order)
- TR: Trapezoidal Rule
- TR-BDF2: TR+Backward DFs (2nd order)

TOLERANCES
RE: 10^-3
AE: 10^-6

RADIAL DISTANCE (GEO = 1)
Libraro, Kasdin, Dutta, Choueiri, 2014



3.Integration & Testing of the EOM
3d case: transfer to GEO

THRUST PROFILE:

Method: ABM
Time step: 1.58 s

Libraro, Kasdin, Dutta, Choueiri, 2014



mission objectives:

•Transfer time

• Fuel expenditure

• Radiation fluence

available controls:

•Thrust magnitude

•Thrust direction

problem of interest:

1. Determine optimal trajectory by minimizing mission
   objectives

2. Take into account dynamic constraints (EOM)

3. Consider eclipse conditions that prohibits
     thrusting

4. Consider available on-board energy storage

solution techniques:

•Indirect method

•Direct method

dynamical model:

•Spherical Earth

•J2 effect

•Injection orbit options

•Energy storage model

14

4.Trajectory Optimization
General Scheme
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Direct method

Discretization of the time interval

  Discretization of the state and control variables

  Defects evaluated at each segment  (trapezoidal scheme)

  Parameter optimization Use NLP (Nonlinear Programming) solver

Goal:  minimize mission objectives by driving all defects to zero

0 = τ1 < τ2 < ... < τn = 1 tk = tfτk hk = tk − tk−1

xk = x(tk) uk = u(tk)

ζk = xk − xk−1 −
hk

2
(fk + fk−1)

4.Trajectory Optimization
Solution Methodology
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4.Trajectory Optimization
The solver in steps

I. Set up decision variables, bounds, 
initial guess and constraints

  Initial guess
  Bounds for variables
  Tolerances
  Number of nodes

Convergence factors

II. Executes LOQO (NLP solver)

III. Extracts state and control 
variables from final solution

IV. Plot trajectory, state and 
control variables

Vanderbei, 2006



5.Optimization Results
Equatorial Transfer to GEO
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INITIAL ALTITUDE: 800 km

INITIAL MASS: 1,000 kg

THRUST: 3 N

SPECIFIC IMPULSE: 2,000 s

Thrust Angle:

• Near tangential
• Sinusoidal variation
• Amplitude increasing over time 

Transfer time:

tf = 15.1702 d (quaternions)
tf = 15.1703 d  (spherical)
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5.Optimization Results
Equatorial Transfer to GEO
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q1 = -q3

q2 = q4
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5.Optimization Results
Polar Orbit-Raising
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Transfer time:

tf = 9.1203 d 

INITIAL ALTITUDE: 800 km

FINAL ALTITUDE: 10,000 km

INITIAL MASS: 1,000 kg

THRUST: 3 N

SPECIFIC IMPULSE: 2,000 s
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5.Optimization Results
Plane-Change Maneuver

INCLINATION FINAL TIME

0 deg 9.7 d

10 deg 19.4 d

20 deg 35.7 d

30 deg 50.6 d

40 deg 65.5 d

50 deg 79.6 d

INITIAL ALTITUDE: 25,000 km

INITIAL MASS: 2,000 kg

INITIAL INCLINATION: 50 deg

THRUST: 1.16 N

SPECIFIC IMPULSE: 1,788 s
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5.Optimization Results
Plane-Change Maneuver
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Concluding Remarks

• WE APPROACHED THE LOW-THRUST PROBLEM USING A GLOBALLY NON-SINGULAR 
QUATERNION-BASED FORMULATION;

• A NON-SINGULAR FORMULATION ALLOWS FOR THE INVESTIGATION OF HIGH-
INCLINATION INJECTION ORBIT OPTIONS;

• HIGH-INCLINATION INJECTION ORBITS CAN POTENTIALLY ADDRESS SOME OF THE 
MAIN CHALLENGES FACED DURING A LOW-THRUST TRANSFER;

• THE NEW QUATERNION-BASED FORMULATION HAS BEEN TESTED AND COMPARED 
TO THE CARTESIAN FORMULATION PROVING TO BE LESS SENSITIVE TO NUMERICAL 
ERROR;

• THE MINIMUM-TIME LOW-THRUST PROBLEM HAS BEEN SOLVED FOR BOTH PLANAR 
AND NON-PLANAR TRANSFERS;

• THE POLAR ORBIT-RAISING MANEUVER PROVES HOW THE NEW 
FORMULATION ALLOWS TO PUSH THE INCLINATION OF THE INJECTION ORBIT 
TO ITS UPPER LIMIT;

• FUTURE WORK INCLUDES INTRODUCING RADIATION AND PERTURBATIVE FORCES 
INTO THE PROBLEM IN ORDER TO INVESTIGATE THE POTENTIAL OF HIGH-
INCLINATION INJECTION ORBITS AND THE APPLICABILITY OF THE NEW 
FORMULATION.
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THANK YOU!  

plibraro@princeton.edu

mailto:plibraro@princeton.edu
mailto:plibraro@princeton.edu

