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Purpose

Demonstrate dissociation of nitrous oxide with non-thermal plasma discharge

Final objective
Achieve self-sustained dissociation using a dielectric barrier discharge (DBD)
Design and fabricate a hybrid electric/monopropellant thruster with this technology

Nitrous oxide dissociation

N,O(g) — N,(g) + 20,(g) + Heat
161 kJ/mol required to break apart N,O
Oxygen molecules recombine and release 245 kJ/mol
Net energy ~ 84 kJ/mol

Self-sustained dissociation can be reached at high temperatures (>1000 °C)
Benefits

“Greener” propellant than current monoprop’s (hydrazine, hydrogen peroxide)

Comparable specific impulse (~200 sec)

Non-toxic/non-flammable, safe to handle

Can be stored as a liquid
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Previous Experiments

Catalysts Plasma
Reduce dissociation Dissociation of NO,
temperature Increased rate of
Power only required at decomposition
startup 100% conversion
Material limitations achieved
Not stable at high Continuous external
temperature power required

Hypothesis: Due to some of the gas being in an excited state, the effective
activation energy for dissociation due to collisions may be reduced
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Experimental: System Design
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Dielectric Barrier Discharge (DBD)

Two concentric electrodes separated

by an insulating dielectric barrier _ _ _
Dielectric Material

High voltage AC
Varying electric potential to
accelerate free electrons
Electrons then collide with N,O

lons /additional free electrons formed

Trapped ions enhance collisionality o Electrode -5 Graand

Only excitation and not full ionization _
1st Electrode - High

may be sufficient Voltage AC

Reduction in activation energy predicted
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0 Tests using CO, as a control
0 The specific heat for CO, is about 5% lower than N,O.
This would result in CO, having a higher temperature increase (only joule heating)
However, we see the exact opposite
0.5 slpm 1.5 slpm 2.5 slpm
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G di h Fegd through

rounding Ies Copper tube j

v Vv

[ J [ J

=
\ ' J
KF-25 flangen ~9 inches KF-25 flangen
Feed through Feed through

Fused two stainless steel to quartz adapters (KF 25 Flanges)
Placed in Bell Jar
Feed-throughs were connected to KF-25 ports on plate

Copper tube will “hold” the two feed-throughs
Direct flow out/in the holes in the feed-throughs

Entire system grounded to grounding mesh



Bell Jar and Instrumentation
e

1 External flow meter
o Switch between CO, and N,O

. BN

1 Blue arrows show flow direction

1 Thermocouples
o1 Shown with red /green arrows

o Red arrows are surface mounted to
flanges and exit flow tube

o Green arrow is internal to flow
immediately downstream of
plasma region

1 Power input

o *High voltage probe

11 *Series resistor to measure current Reactor shown mounted on base plate without bell jar

*Some challenges still need to be addressed
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Power can be divided into the following:

Input power from plasma driver

Measured

Decomposition power

Unknown

Enthalpy increase of gas

Calculated using specific heats/tabulated values and measured
temperatures

Radiative power loss
Inferred = will be baselined using CO,

Pinput Pdecomp Pmd P enthalpy
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Experimental: Results
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Results with latest design
Gas flow at 9 LPM, ~30% maximum voltage
Run for about 2 hours to ensure steady-state
Temperature data recorded from all four
thermocouples
Oscillation in gas temperatures
Period of ~2.5 min
Correlation to oscillation in the flow rate

Inverse relation shows higher temps at lower flow rates

Relationship is as expected, but cause of oscillation is
currently unknown



\

CO, Temperature Data FAN

N ™.

D = = s

EXPERIMENTAL . BN .

» Peak gas temperature around 90°C
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» Peak gas temperature around 120°C
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Location % Power Increase
Power Supply 31 :
6% difference
Gas (Enthalpy) 37
Copper (Rad) 17
Downstream (Rad) 15
Upstream (Rad) 7

Graphs show temperature is higher (30°C) for N,O
~31% more power into the N,O from the power supply
Characteristic of ionization/excitation energies and cross-sections

Radiated power increase shown above at each thermocouple location
Conclusion

Net power released through decomposition of N,O
Presence of plasma is either:

Reducing activation energy (low energy cost — desirable) or
Directly dissociating N,O (high energy cost — not desirable)
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Computational Analysis: Motivation
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External power required to dissociate N,O is deemed
excessive

High energy cost — not desirable
Hypothesis:

Due to some of the gas being in an excited state, the effective
activation energy for dissociation due to collisions may be
reduced

lonization energy for N,O — electrons accelerated in DBD
~12.9 eV

Goal: Input energy less than that to minimize the amount of
power required
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Possible dissociation paths with energies less than ~
13 eV

/.8 eV
8.5 eV
9.6 eV

Build /design an electron source
Accelerate electrons to certain energy levels

Collide with neutral gas, induce excitation
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Computational Analysis: Current Work
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A 2-D numerical model will provide a guideline for
experimentation
First step = 1-D model of plasma within a chamber
Implement “extractor grids” to accelerate electrons
Simulation (1-D):
Fluid treatment for ions and electrons

Transport model: Drift Diffusion

Drift — electric field, Diffusion — gradient of density,
temperature



Scharfetter-Gummel (SG) Method
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Method used to discretize the drift-diffusion

equations
Species density evaluated on cell centers (i)

All other quantities evaluated on cell boundaries (i£1/2)

Fluxes approximated across the cell
All variables constant other than density
First order differential equation in density

Provides more stability



Equations (1)
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Electrons lons
on. on,
V'Fe:Se - VFZZS’L
ot ot
[ = _,ueEne - MeTevne - kt,ueneVTe Fz — ,qunz - ,uzj—jcvnz

Assuming all values other than density constant...

General form of fluxes:

Note density dependence from adjacent nodes!




Equations (2)
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Electron Sources™ lon Sources™
. 2
Se = a|l'e| — pnen; — vyn’ne S; = a|ly| — Bnen;
lonization Recombination 3 - Body lonization Recombination

Semi-implicit time-stepping method
Allows for larger time-steps
Lower computation time

nl.g_nk‘—l F 1—F. 1

i 7 i3 =3 L E s k—1
N N =S ['=T(n" &)

*Ignored negative ions
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1-D Example:

Fluxes, Electric field

Density

1/2 3/2 i-1/2

i+1/2

- calculated on the boundaries of the cells

SG assumes all variables other than density constant across a cell i
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Boundary conditions applied on flux nodes

Somewhat difficult to find ones that made sense
physically and numerically

Current BC:

Assuming small gradients of temperature & density

Up-wind scheme > assume fluxes always going into the
wall

Unsure about this condition but presents the best results

At
n]f t A—QJKCWETL@)l T (b,uEne>2>] =5 + nlf_l G— Left Boundary
At
Right Boundary —_— ni + A—x[(aﬂEne%s + (buEne%—l)} =St n{l;—l

a and b - coefficients to ensure upwind towards boundaries
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Time(22) - 1.1171e-07 seconds
End Time - 0.005 sec

SYSTEM STATUS SIMULATION

At=1seconds
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Extractor plates required to accelerate electrons

1-D simulation
Imposed potential on a plate in the middle
Wall boundaries on plate edges

In 2-D simulation

Used to extract electrons and accelerate to desired
energy levels



Electrons — Gaussian Source + Emitter
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Time(142) - 7.2101e-07 seconds
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Numerical Analysis

Implement sources/sinks into model
lonization /recombination coefficients

Boundary conditions
Extend to 2-D

Extractors

Control electron energy levels
Model collisions with N,O

Experimental setup
Design electron source
Isolate excited states of nitrous oxide

Main goal: Achieve self-sustained decomposition
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